SCP: A Computationally Scalable Byzantine
Consensus Protocol for Blockchains

Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng,
Seth Gilbert, Prateek Saxena

National University of Singapore

Bitcoin doesn’t scale

* Hard coded parameters
— 1 block per 10 minutes
— 1 MB block size
— 7 TXs per second

* Today

— 1-2 TXs per second
— VISA: 10, 000 TXs per second

Our solution: SCP

e Scale up throughput several orders of magnitude
— Without degrading any security guarantee

e Several blocks in each epoch
— No. of blocks = network computation capacity

* Require minimum amount of network bandwidth
— Broadcast only one block header

Byzantine consensus problem

* Problem
— N nodes, f are malicious
Block i-2
— Propose and agree on one value
* Byzantine consensus for blockchains T
— Set of valid TXs per epoch
Block i-1

1

Block i

Classical byzantine consensus protocol

v’ Intensive research
v’ Can tolerate f< n/2

X Assumption of known identity set

X Bandwidth limited
— 0O(n?) messages (e.g. PBFT)
— Work for a small network (e.g n < 1000)

Nakamoto consensus protocol

v’ Work for network of any size
v’ Select leader by proof of work

v’ Linear message complexity

X Does not scale well in practice

X One block per epoch
X Bandwidth = O(block size)
X Reparameterization is not a long term solution

Reparameterization: reducing epoch time

* Setup
* Using Amazon EC2
* Run over 5 regions
e Results
 TX rate increases
until some threshold
* Drops at 12 second

epoch time

Throughput [TX/s]

39

d —=5— experimental Tx rate
30 *1 -»- expected Tx rate

25

20

15

10

)

i e

12 60 120 240 360 480
Epoch time [Seconds]

600

Problem

e Secure & scalable consensus protocol
— Compete with VISA?

SCP overview

e Adjust throughput based on network mining power
— Split the network into several committees
— Committees propose blocks in parallel
— No. of committees = F(network mining capacity)

* Data needed for reaching consensus is minimal

— Consensus data = transactional data
— Verify block without block data
— Selectively download block data

SCP protocol

..
~
<.
~.
S,
~
~
A
\

\

\ :
! O i
’

’
7
7
7’
-
-
-
-

R ¥ Data Blk

Data Blk

""""

Step 1: Identity establishment

e Solve PoW
— SHA2(EpochRandomness || IP | | pubkey || nonce) < D

mm-n-

00001... a.b.c.d ABC..

:> 2 00001.. a.b.ce DEF..

Step 2: Assigning committees

e Randomly & uniformly distribute identities to committees
— Based on the last k bits of POW

e
- -
- ~

1 00001..00 00000...10

2 00000...01 o
3 00000..10 [
4 00001..11 " Toooooa1 |

00001...01

~. -
- .
..........

Size of a committee C

* Decide the probability of majority honest

— P(error) reduces exponentially with C
« f=N/3,C=400, p(error) = 1012
« f=N/3,C=100, p(error) = 0.0004

* Why majority honest wit N T

— Run practical authenticate ° |
— Allow others to verify con. o}

* At least 1 member is hone: B .

size of committes ©

Step 3: Propose a block within a committee

* Run a classical Byzantine consensus protocol
— Members agree & sign on one valid data block
— No. of messages = O(C?)

 TX sets included in data blocks are disjoint
— Include TXs with a specific prefix

Data Block 1 00...
Data Block 2 01...
Data Block 3 10...
Data Block4 11...

Step 4: Final committee unions all results

Propose a
consensus block

Header of
Data Block 1

- — PR————
- te~,
.-

Header of
Data Block 2

~. .
S~ =

T - ..
.-

Header of
Data Block 3

T~ .
e~ -

R -,
.-

e f-

SCP blockchain

Consensus

block i-1

Consensus
block i

Consensus

block i+1

Data block 1

Data block 2

Data block 3

Step 5: Generate an epoch randomness

e Goal

— Generate a fresh randomness

— Adversary cannot control or predict

e Common approach: Use consensus block hash

— Problem: adversary can predict the consensus block early

* QOur approach: Users can have different randomness

Commit R; in
SHA2(R.) when join
the committee

——

Agree on the

consensus
block

Broadcast the

block header
and R,

Use any ¢/2 R
as the epoch
randomness

Implement a SCP-based cryptocurrency

* Challenges

— How to form committees efficiently
* Too many new identities in each epoch
* Epoch time may be long to prevent conflict

— Double spending transactions
* Without previous block data?

Input Ox123.. e Input Ox123...

&

Forming committees efficiently

* Approach: Reuse identities from previous epoch
— Elect one new member and remove the oldest one
— Number of new identities = number of committees

15t Epo{ 2"¢ Epod 3™ Epoch

1111111

* Approach:

Avoid double spending

— Split double spending check into both miners and users
(recipients)

Checked by

Within a
block

committee members

Double
spending

Checked by
recipients™

Across
blocks

*: Proof-of-publication

Checking double spending across blocks

 Merkle tree of TX inputs

— An input is spent in a block
* Proof of size log(N)

Merkle root

— An input is not spent in a block
* Proof of size 2*log(N)

2 3 4 6 7 8 9

ash(pi) hash(p,,,)

included?

All leaves are sorted

Checking double spending across blocks (2)

* Sender proves that the TX’s input is not spent elsewhere
— The proof of size L*log(N)
— Can be optimized

e Recipient checks by using only consensus block headers

— Actively support SPV clients without a trusted third party
— Support 1-confirmation TXs

Conclusion

e SCP scales almost linearly with network mining capacity
— More mining power, higher transaction rate
— Reduced network bandwidth
— Secure
* Applicable to several applications
— Cryptocurrency, decentralized database, etc

Q&A

Loi Luu
loiluu@comp.nus.edu.sg
www.comp.nus.edu.sg/~loiluu

Future work

* |[ncentive structure

— Incentivize committee members and other parties

* Prevent DoS attack by sending invalid TXs
— Users can send arbitrary TXs to the blockchain now

 Rollback solution
— P(error) I1=0

Related work

* Bitcoin-NG & Ghost

v’ Allow more blocks

X Does not separate consensus plane and data plane
* Lighting network

v" Allows more micro transactions

X Does not solve scalability problem
e Sidechains

v Good for experimenting new blockchains
X Does not make Bitcoin scalable

Adjusts number of committees frequently

e Similar to how Bitcoin adjusts the block difficulty
— T: the expected epoch time
— T’: the averaged epoch time of the most 1000 recent blocks
— S: Current number of committees
— §’: adjusted number of committees

S'log(S")=3S log(S)%

Data Block 1

Consensus Block

Previous Block Hash | Timestamp

Committee Global

signatures Merkle Root

Data block commitments

No. | Data Block’s Merkle root
hash of TXs

1 Ox123abc...

2 0x123456...

Previous Merkle root
Consensus commitment of
Blk TXs
Block hash No. of TXs
Committee | Timestamp
signatures
Included TXs

Data Block 2
Previous Merkle root
Consensus commitment of
Blk TXs
Block hash No. of TXs
Committee | Timestamp
signatures

Included TXs

SCP properties

* Number of data blocks = network mining power
— Frequent adjustment of no. of blocks

e Data broadcast to the network is minimal
— Broadcast data is independent of block size

e Secure against adaptive adversary w.h.p.

— Can reparameterize c to secure against stronger adversary

