SCP: A Computationally Scalable Byzantine Consensus Protocol for Blockchains

<u>Loi Luu</u>, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth Gilbert, Prateek Saxena

National University of Singapore

Bitcoin doesn't scale

- Hard coded parameters
 - 1 block per 10 minutes
 - 1 MB block size
 - 7 TXs per second
- Today
 - 1-2 TXs per second
 - VISA: 10, 000 TXs per second

Our solution: SCP

- Scale up throughput <u>several orders of magnitude</u>
 - Without degrading any security guarantee
- Several blocks in each epoch
 - No. of blocks ≈ network computation capacity
- Require minimum amount of network bandwidth
 - Broadcast only one block header

Byzantine consensus problem

Block i-2

- Problem
 - N nodes, f are malicious
 - Propose and agree on one value
- Byzantine consensus for blockchains
 - Set of valid TXs per epoch

Classical byzantine consensus protocol

- ✓ Intensive research
 - ✓ Can tolerate f < n/2
- X Assumption of known identity set
- X Bandwidth limited
 - O(n²) messages (e.g. PBFT)
 - Work for a small network (e.g n < 1000)

Nakamoto consensus protocol

- ✓ Work for network of any size
 - ✓ Select leader by proof of work
- ✓ Linear message complexity
- X Does not scale well in practice
 - X One block per epoch
 - X Bandwidth = O(block size)
 - x Reparameterization is not a long term solution

Reparameterization: reducing epoch time

Setup

- Using Amazon EC2
- Run over 5 regions
- Results
 - TX rate increases until some threshold
 - Drops at 12 second
 epoch time

Problem

- Secure & scalable consensus protocol
 - Compete with VISA?

SCP overview

- Adjust throughput based on network mining power
 - Split the network into several committees
 - Committees propose blocks in parallel
 - No. of committees \approx F(network mining capacity)
- Data needed for reaching consensus is minimal
 - Consensus data != transactional data
 - Verify block without block data
 - Selectively download block data

SCP protocol

Step 1: Identity establishment

- Solve PoW
 - SHA2(EpochRandomness | | IP | | pubkey | | nonce) < D</p>

Step 2: Assigning committees

- Randomly & uniformly distribute identities to committees
 - Based on the last k bits of PoW

Size of a committee C

- Decide the probability of majority honest
 - P(error) reduces exponentially with C
 - f = N/3, C = 400, $p(error) \approx 10^{-12}$
 - f = N/3, C = 100, $p(error) \approx 0.0004$
- Why majority honest wit
 - Run practical authenticate
 - Allow others to verify con _ 10⁻¹⁹
 - At least 1 member is hones

Step 3: Propose a block within a committee

- Run a classical Byzantine consensus protocol
 - Members agree & sign on one valid data block
 - No. of messages ≈ $O(C^2)$
- TX sets included in data blocks are disjoint
 - Include TXs with a specific prefix

Block	TX's IDS
Data Block 1	00
Data Block 2	01
Data Block 3	10
Data Block 4	11

Step 4: Final committee unions all results

SCP blockchain

Step 5: Generate an epoch randomness

- Goal
 - Generate a fresh randomness
 - Adversary cannot control or predict
- Common approach: Use consensus block hash
 - Problem: adversary can predict the consensus block early
- Our approach: Users can have different randomness

Implement a SCP-based cryptocurrency

Challenges

- How to form committees efficiently
 - Too many new identities in each epoch
 - Epoch time may be long to prevent conflict
- Double spending transactions
 - Without previous block data?

Forming committees efficiently

- Approach: Reuse identities from previous epoch
 - Elect one new member and remove the oldest one
 - Number of new identities ≈ number of committees

Avoid double spending

Approach:

 Split double spending check into both miners and users (recipients)

Checking double spending across blocks

- Merkle tree of TX inputs
 - An input is spent in a block
 - Proof of size log(N)

Checking double spending across blocks (2)

- Sender proves that the TX's input is not spent elsewhere
 - The proof of size L*log(N)
 - Can be optimized
- Recipient checks by using only consensus block headers
 - Actively support SPV clients without a trusted third party
 - Support 1-confirmation TXs

Conclusion

- SCP scales almost linearly with network mining capacity
 - More mining power, higher transaction rate
 - Reduced network bandwidth
 - Secure
- Applicable to several applications
 - Cryptocurrency, decentralized database, etc

Q&A

Loi Luu

loiluu@comp.nus.edu.sg

www.comp.nus.edu.sg/~loiluu

Future work

- Incentive structure
 - Incentivize committee members and other parties
- Prevent DoS attack by sending invalid TXs
 - Users can send arbitrary TXs to the blockchain now
- Rollback solution
 - P(error) != 0

Related work

- Bitcoin-NG & Ghost
 - ✓ Allow more blocks
 - x Does not separate consensus plane and data plane
- Lighting network
 - ✓ Allows more micro transactions
 - x Does not solve scalability problem
- Sidechains
 - ✓ Good for experimenting new blockchains
 - x Does not make Bitcoin scalable

Adjusts number of committees frequently

- Similar to how Bitcoin adjusts the block difficulty
 - T: the expected epoch time
 - T': the averaged epoch time of the most 1000 recent blocks
 - S: Current number of committees
 - S': adjusted number of committees

$$S'\log(S') = S\log(S)\frac{T}{T'}$$

Consensus Block		
Previous Block Hash		Timestamp
	mittee tures	Global Merkle Root
Data	block commitments	
No.	Data Block's hash	Merkle root of TXs
1	0x123abc	
2	0x123456	

	Data Block 1		
1	Previous Consensus Blk	Merkle root commitment of TXs	
	Block hash	No. of TXs	
	Committee signatures	Timestamp	
	Included TXs		

Data Block 2		
Previous Consensus Blk	Merkle root commitment of TXs	
Block hash	No. of TXs	
Committee signatures	Timestamp	
Included TXs		

SCP properties

- Number of data blocks ≈ network mining power
 - Frequent adjustment of no. of blocks
- Data broadcast to the network is minimal
 - Broadcast data is independent of block size
- Secure against adaptive adversary w.h.p.
 - Can reparameterize c to secure against stronger adversary