
Zero-knowledge proofs for
Bitcoin scalability and beyond

1

Madars Virza

(based on joint works with Eli Ben-Sasson, Alessandro Chiesa,
Christina Garman, Daniel Genkin, Matthew Green,

Shaul Kfir, Ian Miers and Eran Tromer)

Outline

2

1. A very brief intro to zero-knowledge proofs

2. The power of ZK for Bitcoin scalability

3. Zero-knowledge in practice …

Can zero-knowledge proofs be implemented?
How to “program” zero-knowledge proofs?
How to deploy them in real systems?

[GMR89]
[BFM88]
[NY90]

[BDMP91]

Completeness:

Soundness:
Zero knowledge:

prover verifier

Non-Interactive
Zero Knowledge

3

…

instance witness

E.g.
Circuit-SAT

[BFM88, NY90, BDMP91]

[GMR85, GO94]

Once: initial
trusted setup

Many times

Thm: Impossible for NP (without any help)

Thm: Possible for NP with help of CRS.

common reference string

NIZKs

4

5

Fungibility: if all transactions are public, receiving “wrong”
change for coffee could taint & devalue your coins

Solvency: if proving solvency is privacy liability (thus not done)
you get distrust in traditional service providers

Many scalability problems can be
traced back to questions about privacy

Decentralization: if miners can’t covertly repurpose their work,
you get strong incentives for pooling and miner centralization

Claim: zero-knowledge proofs helpful for all of above!
“Proof”: by example…

6

(based on a scheme by Sanders and Ta-Shma)

…

Mint Spend

cm
“I hereby destroy

1 BTC and create an
anonymous coin with

commitment cm”

cm = H(sn, nonce)

Publish sn, nonce

cm2 cm3 cm4

H H

H

rt

Zerocash builds upon this adding direct payments, divisibility, …

(2) Publishing sn ensures no double-spending

1

(Provisions [DBBCB15])solvency = “assets > liabilities”

User Balance
Alice v1
Bob v2

Charlie v3
… …

privacy-preserving = “reveal nothing about keys & balances”

7

“I can open cmasset and cmliab
to vasset and vliab where vasset > vliab”

Two hiding commitments: cmasset=H(vasset, r) and cmliab = H(vliab, r’)

Three kinds of statements:

2. Each account balance is included in vliab:

a) Publish commitments to all balances
b) Prove to user i that cmi opens to vi
c) Prove that cmliab sums values of all cmi

3. Exchange controls at least vasset BTC:
Fix a large anonymity set of public keys and their balances.
Prove knowledge of private keys for a subset that controls vasset
BTC.

Outline

8

1. A very brief intro to zero-knowledge proofs

2. The power of ZK for Bitcoin scalability

3. Zero-knowledge in practice …

Can zero-knowledge proofs be implemented?
How to “program” zero-knowledge proofs?
How to deploy them in real systems?

NIZKs vs SNARKs

[Mic00, GW11,
BCCT12, BCIOP13]

Sufficient assumptions:

Efficiency: Efficiency:

(Succinct Non-Interactive
Arguments of Knowledge)

- trapdoor permutations
- decision linear assumption (DLIN)

Sufficient assumptions:
- random oracle
- knowledge-of-exponent [D92, HT98]

9

“Simple” CRS “Complex” CRS

E.g. Schnorr proofs, CT range proofs

10

libsnark

Finding a SNARK

SNARKs are feasible for certain applications!
E.g.: Zerocash [BCGGTV14], Hawk [MSKK15], …

(i) Theoretical constructions

(ii) Working prototypes

[Killian92, Micali94, Valiant08, Mie08, DL08, Groth10, GLR11, BCCT12, DFH12,
BC12, Lipmaa12, BCIOP13, GGPR13, PGHR13, BCGTV13, Lipmaa13, FLZ13,
BCCT13, BCTV14a,BCCGLRT14, BCTV14b, Lipmaa14, KPPSST14, ZPK14, DFGK14,
WSRBW15, BBFR15, CFHKKNPZ15]

(iii) Implemented systems

Most have full source code available!

 [PGHR13,CFHKKNPZ15]

[BFRSBW14, WSRBW15]

[BCGTV13,BCGTV14]

Buffet & Pantry

Pinocchio & Geppetto

www.pepper-project.org
libsnark.org

vc.codeplex.com

11

How to program SNARKs
Relation I have in mind: Relations SNARKs understand:

Hashes, Merkle trees,
digital signatures,…

Circuit
satisfiability

 ?

The “SNARKS for C” approach:

P.c

 P.asm

+

The program analysis approach:

(* - all memory accesses & bounds on loops must be known at compile time)
2. Use a circuit generator for that subset

P.c--

The “gadget DSL” approach:
 SNARK

verifier
SHA256

EC arithm.Lots of pre-written
gadgets in libsnark!

12

SNARK performance in practice
Prover performance = base SNARK performance(size of circuit)

[MKKS15] prover benchmarks for 470k gate circuit:
Pinocchio: 1242s libsnark: 33s

Approach Compression
function size

“Capacity” of 470k
gate circuit

SNARKS for C / TinyRAM
Pinocchio circuit generator*

libsnark gadgets

Concretely: implementing SHA256 compression function

(* invoked on a SH256 C implementation from
PolarSSL)Crucial for efficient use: relation engineering

- Try to check local properties (“is the tx OK?” not “is the chain
OK?”)- Understand and leverage non-determinism
- Consider SNARK-friendly crypto [BCTV14b, KZMQCPPSS15]

Deploying NIZKs and SNARKs

13

?

Q: In practice, who generates the CRS?

Consequences of a “bad” CRS

14

1) Zero-knowledge still holds:
e.g. Zerocash remains private even with a bad CRS)

2) Soundness breaks:
adversary can prove false statements

Some uses of SNARKs are not consensus-critical

Q: Can consensus-critical SNARKs be deployed?

Goal: distributed protocol for CRS of SNARKs

…

15

Real worldIdeal world

Result: a protocol achieving this! [BCGTV15]

Costs for Zerocash CRS: 4h/party CPU and 13GB/party data.

Conclusion

16

Generic zero-knowledge is not “ten-year-away crypto”
… it was “ten-year-away crypto” ten years ago!
Feasible today: can be programmed & can be deployed!

Many scalability problems can be traced back to
privacy.Zero-knowledge proofs are a very useful tool for building
privacy-preserving systems.

Call for collaboration: help us improve libsnark!

http://libsnark.org/help

We seek all kinds of contributions: security audits,
performance enhancements, new features, …

Thank you!

17

http://libsnark.org/help

