Zero-knowledge proofs for
Bitcoin scalability and beyond

Illiif’ Madars Virza

(based on joint works with Eli Ben-Sasson, Alessandro Chiesa,
Christina Garman, Daniel Genkin, Matthew Green,
Shaul Kfir, lan Miers and Eran Tromer)

Outline

1. A very brief intro to zero-knowledge proofs
2. The power of ZK for Bitcoin scalability

3. Zero-knowledge in practice ...

Can zero-knowledge proofs be implemented?
How to “program” zero-knowledge proofs?

How to deploy them in real systems?

[GMR89]

Zero Knowledge

E.8.
. A relation: a set of pairs (x, W
CredteSREsar © R4 — \l]\
X instance witness

w - P <

prover
1\

verifier

Completeness: (x,w) € R = P can make V accept
Soundness: (X, W) & R = P can’t make V accept

Zero knowledge: V' |learns nothing else other than 3w

Once: initial
trusted setup

common reference string

Many times

Thm: Impossible for NP (without any help) (curss, cosa)

Thm: Possible for NP with help of CRS. (efmss, nvso, sBomeo

Many scalability problems can be
traced back to questions about privacy

Fungibility: if all transactions are public, receiving “wrong”
change for coffee could taint & devalue your coins

Solvency: if proving solvency is privacy liability (thus not done)
you get distrust in traditional service providers

Decentralization: if miners can’t covertly repurpose their work,
you get strong incentives for pooling and miner centralization

Claim: zero-knowledge proofs helpful for all of above!
“Proof”: by example...

ZK = privacy and fungibility

(based on a scheme by Sanders and Ta-Shma)

— —_— —_— —_
~ //1
Mint ™ ‘ Spend
“I hereby destroy 9 9 @ Publish-shnrence-
1 BTC and create an tm, cm, cm, Publish sn, T

anonymous coin with
commitment cm”

cm = H(sn, nonce)
rt

“J nonce s.t.

cm=H(sn, nonce)
and cm € rt”

(1) is zero-knowledge and unlinkable to cm, yet ensures integrity

(2) Publishing sn ensures no double-spending

Zerocash builds upon this adding direct payments, divisibility, ...

ZK = privacy-preserving proofs of solvency

solvency = “assets > liabilities” (Provisions [DBBCB15])
privacy-preserving = “reveal nothing about keys & balances”

Two hiding commitments:cm____=H(v_
asset asset

Three kinds of statements: ! “Icanopencm__ andcm,_]
)

1. Exchange is solvent: tov _.andv. wherev >v. .

r)andem_ =H(v.,r)

2. Each account balance is included in Vi

User Balance

Alice v -~ em, a) Publish commitments to all balances
Bob v —¢m; b) Prove to user i that cm. opens to v,
Charlie v ~ s ¢) Prove that em, sums values of all cm.

LI TR RN

3. Exchange controls at least V... BTC:

Fix a large anonymity set of public keys and their balances.

Prove knowledge of private keys for a subset that controls v_
BTC

set /

Outline

3. Zero-knowledge in practice ...

Can zero-knowledge proofs be implemented?
How to “program” zero-knowledge proofs?

How to deploy them in real systems?

NIZKs VS SNARKS

E.g. Schnorr proofs, CT range proofs (Succinct Non-Interactive
Arguments of Knowledge)

vis5 | [Micoo, Gwi1,
/ ‘.'g’ BCCT12, BCIOP13]

CRS% CRS% \
VA T
p p -V

Efficiency: Efficiency:
| = 0,(Tg)] = 0,(1) \./é%
time(V) = 0,(Tg) time(V) = 0,(|x|)
Sufficient assumptions: Sufficient assumptions:
- trapdoor permutations - random oracle
- decision linear assumption (DLIN) - knowledge-of-exponent [D92, HT98]

“Simple” CRS “Complex” CRS ’

Finding a SNARK

(i) Theoretical constructions
[Killian92, Micali94, Valiant08, Mie08, DLO8, Groth10, GLR11, BCCT12, DFH12,
BC12, Lipmaal2, BCIOP13, GGPR13, PGHR13, BCGTV13, Lipmaal3, FLZ13,
BCCT13, BCTV14a,BCCGLRT14, BCTV14b, Lipmaal4, KPPSST14, ZPK14, DFGK14,
WSRBW15, BBFR15, CFHKKNPZ15]

(ii)) Working prototypes
Buffet & Pantry = www.pepper-project.org [BFRSBW14, WSRBW15]

libsnark libsnark.org [BCGTV13,BCGTV14]

Pinocchio & Geppetto vc.codeplex.com [PGHR13,CFHKKNPZ15]

Most have full source code available!

(iii) Implemented systems
SNARKs are feasible for certain applications!

E.g.: Zerocash [BCGGTV14], Hawk [MSKK15], ...

How to program SNARKSs

Relation | have in mind: > Relations SNARKs understand:
Hashes, Merkle trees, z Circuit X
digital signatures,... satisfiability w
The “SNARKS for C” approach: P.c

1. Pick a CPU and write universal circuit Cgap for it Y
2. Write a C program P that decides R P.asm +
3. Compile P to assembly & plug into Cram

The program analysis approach:

1. Write P in restricted subset™ of C P.C-- —
2. Use a circuit generator for that subset

(* - all memory accesses & bounds on loops must be known at compile time)

The “gadget DSL” approach:
Write subcircuit SHA256

component o] Lots of pre-written L EC arithm. |l
compose the thel gadgets in libsnark! | ... o {

SNARK performance in practice

Verification time: only depends on |x|, usually ms in practice.

Prover performance = base SNARK performance(size of circuit)
[MKKS15] prover benchmarks for 470k gate circuit:

Pinocchio: 1242s libsnark: 33s

Concretely: implementing SHA256 compression function
Compression “Capacity” of 470k

Approach
PP function size gate circuit

SNARKS for C / TinyRAM
Pinocchio circuit generator*

libsnark gadgets
(* invoked on a SH256 C implementation from

Crucial for efficient use: relation engineering
- Try to check local properties (“is the tx OK?” not “is the chain

OfAderstand and leverage non-determinism
- Consider SNARK-friendly crypto [BCTV14b, KZMQCPPSS15]

Deploying NIZKs and SNARKSs

[

CRS,

-4 \} > y
o Yol

S\

'

W
Y .
i Y !‘:\
£
% g‘
u'~'f‘
C

Q: In practice, who generates the CRS?

/}

™

\“-\\\
¥ - *
~
i

13

Consequences of a “bad” CRS

1) Zero-knowledge still holds:
e.g. Zerocash remains private even with a bad CRS)

2) Soundness breaks:
adversary can prove false statements

Some uses of SNARKs are not consensus-critical

E.g.: Peter Todd’s proposal for faster block propagation:
Send block header + proof of “3 block”

bad CRS — a couple of lost blocks, but long term durability OK!

Q: Can consensus-critical SNARKs be deployed?

Goal: distributed protocol for CRS of SNARKSs

Ideal world Real world

Up to n — 1 corruptions

Result: a protocol achieving this! [BCGTV15]
Costs for Zerocash CRS: 4h/party CPU and 13GB/party data.

Conclusion

Many scalability problems can be traced back to

pEMG Rhowledge proofs are a very useful tool for building
privacy-preserving systems.

Generic zero-knowledge is not “ten-year-away crypto”
... it was “ten-year-away crypto” ten years ago!

Feasible today: can be programmed & can be deployed!

Call for collaboration: help us improve libsnark!

We seek all kinds of contributions: security audits,
performance enhancements, new features, ...
http://libsnark.org/help

Thank you!

http://libsnark.org/help

17

